Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes.
نویسندگان
چکیده
Bunyaviruses replicate in the cytoplasm of infected cells. New viral particles are formed by budding of nucleocapsids into the Golgi apparatus. We have previously shown that the IFN-induced human MxA protein inhibits bunyavirus replication by an unknown mechanism. Here we demonstrate that MxA binds to the nucleocapsid protein of La Crosse virus (LACV) and colocalizes with the viral protein in cytoplasmic complexes. Electron microscopy revealed that these complexes accumulated in the perinuclear area and consisted of highly ordered fibrillary structures. A similar MxA-mediated redistribution of viral nucleocapsid proteins was detected with other bunyaviruses, such as Bunyamwera virus and Rift Valley fever virus. MxA(E645R), a carboxy-terminal mutant of MxA without antiviral activity against LACV, did not lead to complex formation. Wild-type MxA, but not MxA(E645R), was able to bind to LACV nucleocapsid protein in coimmunoprecipitation assays, demonstrating the importance of the carboxy-terminal effector domain of MxA. These results illustrate an efficient mechanism of IFN action whereby an essential virus component is trapped in cytoplasmic inclusions and becomes unavailable for the generation of new virus particles.
منابع مشابه
Human MxA protein protects mice lacking a functional alpha/beta interferon system against La crosse virus and other lethal viral infections.
The human MxA protein is part of the antiviral state induced by alpha/beta interferon (IFN-alpha/beta). MxA inhibits the multiplication of several RNA viruses in cell culture. However, its antiviral potential in vivo has not yet been fully explored. We have generated MxA-transgenic mice that lack a functional IFN system by crossing MxA-transgenic mice constitutively expressing MxA with genetica...
متن کاملHuman MxA protein inhibits the replication of Crimean-Congo hemorrhagic fever virus.
Crimean-Congo hemorrhagic fever virus (CCHFV) belongs to the genus Nairovirus within the family Bunyaviridae and is the causative agent of severe hemorrhagic fever. Despite increasing knowledge about hemorrhagic fever viruses, the factors determining their pathogenicity are still poorly understood. The interferon-induced MxA protein has been shown to have an inhibitory effect on several members...
متن کاملRole of nucleotide binding and GTPase domain dimerization in dynamin-like myxovirus resistance protein A for GTPase activation and antiviral activity.
Myxovirus resistance (Mx) GTPases are induced by interferon and inhibit multiple viruses, including influenza and human immunodeficiency viruses. They have the characteristic domain architecture of dynamin-related proteins with an N-terminal GTPase (G) domain, a bundle signaling element, and a C-terminal stalk responsible for self-assembly and effector functions. Human MxA (also called MX1) is ...
متن کاملInhibition of bunyaviruses, phleboviruses, and hantaviruses by human MxA protein.
Viruses of the Bunyaviridae family cause a variety of diseases ranging from uncomplicated fever to potentially lethal encephalitis and hemorrhagic fever. Little is known about the factors determining pathogenicity in the vertebrate host. Interferons have been reported to be inhibitory, but their mode of action against members of the Bunyaviridae has not yet been elucidated. The interferon-induc...
متن کاملEfficient production of Rift Valley fever virus-like particles: The antiviral protein MxA can inhibit primary transcription of bunyaviruses.
Rift Valley fever virus (RVFV) is a highly pathogenic member of the family Bunyaviridae that needs to be handled under biosafety level (BSL) 3 conditions. Here, we describe reverse genetics systems to measure RVFV polymerase activity in mammalian cells and to generate virus-like particles (VLPs). Recombinant polymerase (L) and nucleocapsid protein (N), expressed together with a minireplicon RNA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 5 شماره
صفحات -
تاریخ انتشار 2002